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International Laser Ranging Service

Motivation A
The excess Length Of Day (ALOD) describes the excess revolution time of the Earth w.r.t. 86400s. Laser ranging observations to satellites can be used in order to determine ALOD
besides polar motion, crust-fixed station coordinates and coefficients of the Earth’s gravitational field (Stokes coefficients). Reliable estimates of the previously mentioned parameters
require the combination of different orbital inclinations since correlations between Earth rotation parameters, orbit parameters and the low degree Stokes coefficients affect the
estimates. Furthermore, Satellite Laser Ranging (SLR) observations are sensitive to relativistic effects such as Lense-Thirring and de Sitter which are caused by the rotation of the Earth
and the rotation of the Earth around the Sun. This paper discusses the existing correlations in theory and compares single-satellite solutions (LAGEOS 1, LAGEOS 2) with a two-satellite
\ solution (LAGEOS 1/2) in order to quantify the secular effect of the parameter correlations on the estimated ALOD values. )
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Secular perturbations of LOD derived from satellite techniques Systematics in LOD due to a priori gravitational fields
Based on Yoder et al. (1983) and Rothacher et al. (1999), the longitude of the Since the ALOD estimates are highly correla-
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Therein, p is the ratio of universal time to sidereal time, w is the argument of perigee reduced in the multi-satellite solution. LAGEOS 1 single-satellite solution
and M, is the mean anomaly at osculation epoch t,. The parameters w and M, are o I T ‘ T | I
mapped with the cosine of the satellite’s inclination i into the equatorial plane. = 0 ‘
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Besides the secular perturbation due to AC,,, also the estimation of empirical once- year 0977985 1990 1995 2000 2005 2010 2015
per-revolution accelerations in cross-track direction (with s, ¢ being the sine-, cosine- Fig. 3: Used a priori values for the Stokes _ _ - _
term) cause secular perturbations. The relationship is shown in the following equation: coefflc:len_t C20 m_odeled over thg whole Fig. 4: S_yst_ematlcs of ALOD caused by different
computation period (1983.0 until 2014.0). C,o a priori models.
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2na’vl—e”sini 2na®vl—e”sini In order to quantify the impact of the orbit modeling (estimation of empirical once-per-
Finally, relativistic effects such as the gravitomagnetic (Lense-Thirring) and the revolution terms) and the solution setup (estimation of Stokes coefficients), three
gravitoelectric precession (de Sitter) cause secular perturbations in ALOD according to different test solutions are computed:
Oas] sol 1: C/S,,, are fixed to GGMO02C model and no empirical accelerations are estimated,
— e -~ sol 2: C/S,,, are freely estimated and no empirical accelerations are estimated,
a,, - — ZBGMEB |]€B |2 3 and Qg = 2521:/[}; ng |1 - eé(l — cos 2u). sol 3: C/S,,,, and empirical accelerations are estimated (sine term s, cosine term c).
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The interaction of all perturbations is summarized in Figure 1. The impact on the mean £ 20 L | three different test solutions for both single-
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DGFI SLR solution ;3 00 shows the smallest scatter. If also the s-term is
S o0 estimated, the scatter of ALOD is reduced in all
The weekly DGFI single-satellite and multi-satellite SLR solutions contain station 4_500 | . | . | | solutions but still no reliable estimates in case
coordinates, Earth Orientation Parameters (EOP), orbit parameters and second degree o 9% 1990 1emn 2000 2005 2000201 ey A9 can be obtained.
Stokes coefficients. A detailed description of the estimated parameters and the Fig. 5: Systematics of ALOD due to correlations with estimated parameters. The panels show the three
solution setup (used constraints and parameterization) can be found in BloRfeld et al. LA1 (red) and LA2 (green) single-satellite solutions and the LA1/2 (blue) multi-satellite solution.
(2014). Figure 2 shows the correlation matrices of the single-satellite and multi-satellite \ /
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0 The impact of the relativistic effects on ALOD
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Fig. 2: Mean correlation matrices of LAGEOS 1 and 2 single-satellite and the satellite-separated multi-

satellite solution. Due to the varying number of stations per week, the station-related (coordinates and
biases) rows/columns are not shown. The correlations (a) to (i) are explained in Bloflfeld et al. (2014).

J

Bloffeld et al.: Systematic effects in LOD from SLR observations, Adv Space Res 54, pp: 1049-1063, doi: 10.1016/j.asr.2014.06.009, 2014
Rothacher et al.: Estimation of nutation using global positioning system, J Geophys Res 104(B3), pp: 4835-4859, doi:
10.1029/1998JB900078, 1999

Yoder et al.: Secular variation of Earth’s gravitational harmonic J2 coefficient from Lageos and nontidal acceleration of Earth rotation,
Nature 303(5920), pp: 757-762, 1983

The authors want to thank the ILRS for providing the observations to LAGEOS 1 and 2. This work was funded within the DFG research

\unit ‘Earth rotation and global dynamic processes’ (FOR 584).

J

19t International Workshop on Laser Ranging, October 27-31, 2014, Annapolis, MD, United States



